aboutsummaryrefslogtreecommitdiffstats
path: root/com32/libutil
diff options
context:
space:
mode:
authorH. Peter Anvin <hpa@zytor.com>2009-05-29 15:10:27 -0700
committerH. Peter Anvin <hpa@zytor.com>2009-05-29 15:10:27 -0700
commit4855d1943dd672e4990160a1e21f08b07e5c7995 (patch)
tree58633074d4699bfc97f07fb6e5b190885a7b7b70 /com32/libutil
parent8450f2dd11ffdb0aed7a9837ec9cbe7629c08e8f (diff)
downloadsyslinux-4855d1943dd672e4990160a1e21f08b07e5c7995.tar.gz
syslinux-4855d1943dd672e4990160a1e21f08b07e5c7995.tar.xz
syslinux-4855d1943dd672e4990160a1e21f08b07e5c7995.zip
Run Nindent on com32/libutil/sha256crypt.c
Automatically reformat com32/libutil/sha256crypt.c using Nindent. Do this for all files except HDT, gPXE and externally maintained libraries (zlib, tinyjpeg, libpng). Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Diffstat (limited to 'com32/libutil')
-rw-r--r--com32/libutil/sha256crypt.c1029
1 files changed, 492 insertions, 537 deletions
diff --git a/com32/libutil/sha256crypt.c b/com32/libutil/sha256crypt.c
index 27f912e7..2e945351 100644
--- a/com32/libutil/sha256crypt.c
+++ b/com32/libutil/sha256crypt.c
@@ -19,16 +19,14 @@
#define MAX(x,y) max(x,y)
/* Structure to save state of computation between the single steps. */
-struct sha256_ctx
-{
- uint32_t H[8];
+struct sha256_ctx {
+ uint32_t H[8];
- uint32_t total[2];
- uint32_t buflen;
- char buffer[128]; /* NB: always correctly aligned for uint32_t. */
+ uint32_t total[2];
+ uint32_t buflen;
+ char buffer[128]; /* NB: always correctly aligned for uint32_t. */
};
-
#if __BYTE_ORDER == __LITTLE_ENDIAN
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
@@ -36,15 +34,12 @@ struct sha256_ctx
# define SWAP(n) (n)
#endif
-
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. (FIPS 180-2:5.1.1) */
-static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
-
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
-static const uint32_t K[64] =
- {
+static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
@@ -61,48 +56,46 @@ static const uint32_t K[64] =
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
-
+};
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
static void
-sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
+sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx)
{
- unsigned int t;
- const uint32_t *words = buffer;
- size_t nwords = len / sizeof (uint32_t);
- uint32_t a = ctx->H[0];
- uint32_t b = ctx->H[1];
- uint32_t c = ctx->H[2];
- uint32_t d = ctx->H[3];
- uint32_t e = ctx->H[4];
- uint32_t f = ctx->H[5];
- uint32_t g = ctx->H[6];
- uint32_t h = ctx->H[7];
-
- /* First increment the byte count. FIPS 180-2 specifies the possible
- length of the file up to 2^64 bits. Here we only compute the
- number of bytes. Do a double word increment. */
- ctx->total[0] += len;
- if (ctx->total[0] < len)
- ++ctx->total[1];
-
- /* Process all bytes in the buffer with 64 bytes in each round of
- the loop. */
- while (nwords > 0)
- {
- uint32_t W[64];
- uint32_t a_save = a;
- uint32_t b_save = b;
- uint32_t c_save = c;
- uint32_t d_save = d;
- uint32_t e_save = e;
- uint32_t f_save = f;
- uint32_t g_save = g;
- uint32_t h_save = h;
-
- /* Operators defined in FIPS 180-2:4.1.2. */
+ unsigned int t;
+ const uint32_t *words = buffer;
+ size_t nwords = len / sizeof(uint32_t);
+ uint32_t a = ctx->H[0];
+ uint32_t b = ctx->H[1];
+ uint32_t c = ctx->H[2];
+ uint32_t d = ctx->H[3];
+ uint32_t e = ctx->H[4];
+ uint32_t f = ctx->H[5];
+ uint32_t g = ctx->H[6];
+ uint32_t h = ctx->H[7];
+
+ /* First increment the byte count. FIPS 180-2 specifies the possible
+ length of the file up to 2^64 bits. Here we only compute the
+ number of bytes. Do a double word increment. */
+ ctx->total[0] += len;
+ if (ctx->total[0] < len)
+ ++ctx->total[1];
+
+ /* Process all bytes in the buffer with 64 bytes in each round of
+ the loop. */
+ while (nwords > 0) {
+ uint32_t W[64];
+ uint32_t a_save = a;
+ uint32_t b_save = b;
+ uint32_t c_save = c;
+ uint32_t d_save = d;
+ uint32_t e_save = e;
+ uint32_t f_save = f;
+ uint32_t g_save = g;
+ uint32_t h_save = h;
+
+ /* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
@@ -110,147 +103,137 @@ sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
- /* It is unfortunate that C does not provide an operator for
- cyclic rotation. Hope the C compiler is smart enough. */
+ /* It is unfortunate that C does not provide an operator for
+ cyclic rotation. Hope the C compiler is smart enough. */
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
- /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
- for (t = 0; t < 16; ++t)
- {
- W[t] = SWAP (*words);
- ++words;
+ /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
+ for (t = 0; t < 16; ++t) {
+ W[t] = SWAP(*words);
+ ++words;
}
- for (t = 16; t < 64; ++t)
- W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
-
- /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
- for (t = 0; t < 64; ++t)
- {
- uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
- uint32_t T2 = S0 (a) + Maj (a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
+ for (t = 16; t < 64; ++t)
+ W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
+
+ /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
+ for (t = 0; t < 64; ++t) {
+ uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
+ uint32_t T2 = S0(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
}
- /* Add the starting values of the context according to FIPS 180-2:6.2.2
- step 4. */
- a += a_save;
- b += b_save;
- c += c_save;
- d += d_save;
- e += e_save;
- f += f_save;
- g += g_save;
- h += h_save;
-
- /* Prepare for the next round. */
- nwords -= 16;
+ /* Add the starting values of the context according to FIPS 180-2:6.2.2
+ step 4. */
+ a += a_save;
+ b += b_save;
+ c += c_save;
+ d += d_save;
+ e += e_save;
+ f += f_save;
+ g += g_save;
+ h += h_save;
+
+ /* Prepare for the next round. */
+ nwords -= 16;
}
- /* Put checksum in context given as argument. */
- ctx->H[0] = a;
- ctx->H[1] = b;
- ctx->H[2] = c;
- ctx->H[3] = d;
- ctx->H[4] = e;
- ctx->H[5] = f;
- ctx->H[6] = g;
- ctx->H[7] = h;
+ /* Put checksum in context given as argument. */
+ ctx->H[0] = a;
+ ctx->H[1] = b;
+ ctx->H[2] = c;
+ ctx->H[3] = d;
+ ctx->H[4] = e;
+ ctx->H[5] = f;
+ ctx->H[6] = g;
+ ctx->H[7] = h;
}
-
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.2) */
-static void
-sha256_init_ctx (struct sha256_ctx *ctx)
+static void sha256_init_ctx(struct sha256_ctx *ctx)
{
- ctx->H[0] = 0x6a09e667;
- ctx->H[1] = 0xbb67ae85;
- ctx->H[2] = 0x3c6ef372;
- ctx->H[3] = 0xa54ff53a;
- ctx->H[4] = 0x510e527f;
- ctx->H[5] = 0x9b05688c;
- ctx->H[6] = 0x1f83d9ab;
- ctx->H[7] = 0x5be0cd19;
-
- ctx->total[0] = ctx->total[1] = 0;
- ctx->buflen = 0;
+ ctx->H[0] = 0x6a09e667;
+ ctx->H[1] = 0xbb67ae85;
+ ctx->H[2] = 0x3c6ef372;
+ ctx->H[3] = 0xa54ff53a;
+ ctx->H[4] = 0x510e527f;
+ ctx->H[5] = 0x9b05688c;
+ ctx->H[6] = 0x1f83d9ab;
+ ctx->H[7] = 0x5be0cd19;
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
}
-
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
-static void *
-sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
+static void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf)
{
- unsigned int i;
- /* Take yet unprocessed bytes into account. */
- uint32_t bytes = ctx->buflen;
- size_t pad;
+ unsigned int i;
+ /* Take yet unprocessed bytes into account. */
+ uint32_t bytes = ctx->buflen;
+ size_t pad;
- /* Now count remaining bytes. */
- ctx->total[0] += bytes;
- if (ctx->total[0] < bytes)
- ++ctx->total[1];
+ /* Now count remaining bytes. */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
- pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
- memcpy (&ctx->buffer[bytes], fillbuf, pad);
+ pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
+ memcpy(&ctx->buffer[bytes], fillbuf, pad);
- /* Put the 64-bit file length in *bits* at the end of the buffer. */
- *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
- *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
- (ctx->total[0] >> 29));
+ /* Put the 64-bit file length in *bits* at the end of the buffer. */
+ *(uint32_t *) & ctx->buffer[bytes + pad + 4] = SWAP(ctx->total[0] << 3);
+ *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) |
+ (ctx->total[0] >> 29));
- /* Process last bytes. */
- sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
+ /* Process last bytes. */
+ sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);
- /* Put result from CTX in first 32 bytes following RESBUF. */
- for (i = 0; i < 8; ++i)
- ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
+ /* Put result from CTX in first 32 bytes following RESBUF. */
+ for (i = 0; i < 8; ++i)
+ ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]);
- return resbuf;
+ return resbuf;
}
-
static void
-sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
+sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx)
{
- /* When we already have some bits in our internal buffer concatenate
- both inputs first. */
- if (ctx->buflen != 0)
- {
- size_t left_over = ctx->buflen;
- size_t add = 128 - left_over > len ? len : 128 - left_over;
-
- memcpy (&ctx->buffer[left_over], buffer, add);
- ctx->buflen += add;
-
- if (ctx->buflen > 64)
- {
- sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
-
- ctx->buflen &= 63;
- /* The regions in the following copy operation cannot overlap. */
- memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
- ctx->buflen);
+ /* When we already have some bits in our internal buffer concatenate
+ both inputs first. */
+ if (ctx->buflen != 0) {
+ size_t left_over = ctx->buflen;
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
+
+ memcpy(&ctx->buffer[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (ctx->buflen > 64) {
+ sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
+
+ ctx->buflen &= 63;
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
+ ctx->buflen);
}
- buffer = (const char *) buffer + add;
- len -= add;
+ buffer = (const char *)buffer + add;
+ len -= add;
}
- /* Process available complete blocks. */
- if (len >= 64)
- {
+ /* Process available complete blocks. */
+ if (len >= 64) {
/* To check alignment gcc has an appropriate operator. Other
compilers don't. */
#if __GNUC__ >= 2
@@ -258,39 +241,33 @@ sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
#else
# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
#endif
- if (UNALIGNED_P (buffer))
- while (len > 64)
- {
- sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
- buffer = (const char *) buffer + 64;
- len -= 64;
- }
- else
- {
- sha256_process_block (buffer, len & ~63, ctx);
- buffer = (const char *) buffer + (len & ~63);
- len &= 63;
+ if (UNALIGNED_P(buffer))
+ while (len > 64) {
+ sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
+ buffer = (const char *)buffer + 64;
+ len -= 64;
+ } else {
+ sha256_process_block(buffer, len & ~63, ctx);
+ buffer = (const char *)buffer + (len & ~63);
+ len &= 63;
}
}
- /* Move remaining bytes into internal buffer. */
- if (len > 0)
- {
- size_t left_over = ctx->buflen;
-
- memcpy (&ctx->buffer[left_over], buffer, len);
- left_over += len;
- if (left_over >= 64)
- {
- sha256_process_block (ctx->buffer, 64, ctx);
- left_over -= 64;
- memcpy (ctx->buffer, &ctx->buffer[64], left_over);
+ /* Move remaining bytes into internal buffer. */
+ if (len > 0) {
+ size_t left_over = ctx->buflen;
+
+ memcpy(&ctx->buffer[left_over], buffer, len);
+ left_over += len;
+ if (left_over >= 64) {
+ sha256_process_block(ctx->buffer, 64, ctx);
+ left_over -= 64;
+ memcpy(ctx->buffer, &ctx->buffer[64], left_over);
}
- ctx->buflen = left_over;
+ ctx->buflen = left_over;
}
}
-
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static const char sha256_salt_prefix[] = "$5$";
@@ -309,201 +286,189 @@ static const char sha256_rounds_prefix[] = "rounds=";
/* Table with characters for base64 transformation. */
static const char b64t[64] =
-"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
-
-static char *
-sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
+static char *sha256_crypt_r(const char *key, const char *salt, char *buffer,
+ int buflen)
{
- unsigned char alt_result[32]
- __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
- unsigned char temp_result[32]
- __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
- struct sha256_ctx ctx;
- struct sha256_ctx alt_ctx;
- size_t salt_len;
- size_t key_len;
- size_t cnt;
- char *cp;
- char *copied_key = NULL;
- char *copied_salt = NULL;
- char *p_bytes;
- char *s_bytes;
- /* Default number of rounds. */
- size_t rounds = ROUNDS_DEFAULT;
- bool rounds_custom = false;
-
- /* Find beginning of salt string. The prefix should normally always
- be present. Just in case it is not. */
- if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
- /* Skip salt prefix. */
- salt += sizeof (sha256_salt_prefix) - 1;
-
- if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
- == 0)
- {
- const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
- char *endp;
- unsigned long int srounds = strtoul (num, &endp, 10);
- if (*endp == '$')
- {
- salt = endp + 1;
- rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
- rounds_custom = true;
+ unsigned char alt_result[32]
+ __attribute__ ((__aligned__(__alignof__(uint32_t))));
+ unsigned char temp_result[32]
+ __attribute__ ((__aligned__(__alignof__(uint32_t))));
+ struct sha256_ctx ctx;
+ struct sha256_ctx alt_ctx;
+ size_t salt_len;
+ size_t key_len;
+ size_t cnt;
+ char *cp;
+ char *copied_key = NULL;
+ char *copied_salt = NULL;
+ char *p_bytes;
+ char *s_bytes;
+ /* Default number of rounds. */
+ size_t rounds = ROUNDS_DEFAULT;
+ bool rounds_custom = false;
+
+ /* Find beginning of salt string. The prefix should normally always
+ be present. Just in case it is not. */
+ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
+ /* Skip salt prefix. */
+ salt += sizeof(sha256_salt_prefix) - 1;
+
+ if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
+ == 0) {
+ const char *num = salt + sizeof(sha256_rounds_prefix) - 1;
+ char *endp;
+ unsigned long int srounds = strtoul(num, &endp, 10);
+ if (*endp == '$') {
+ salt = endp + 1;
+ rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
+ rounds_custom = true;
}
}
- salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
- key_len = strlen (key);
+ salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
+ key_len = strlen(key);
- if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
- {
- char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
- key = copied_key =
- memcpy (tmp + __alignof__ (uint32_t)
- - (tmp - (char *) 0) % __alignof__ (uint32_t),
- key, key_len);
+ if ((key - (char *)0) % __alignof__(uint32_t) != 0) {
+ char *tmp = (char *)alloca(key_len + __alignof__(uint32_t));
+ key = copied_key = memcpy(tmp + __alignof__(uint32_t)
+ - (tmp - (char *)0) % __alignof__(uint32_t),
+ key, key_len);
}
- if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
- {
- char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
- salt = copied_salt =
- memcpy (tmp + __alignof__ (uint32_t)
- - (tmp - (char *) 0) % __alignof__ (uint32_t),
- salt, salt_len);
+ if ((salt - (char *)0) % __alignof__(uint32_t) != 0) {
+ char *tmp = (char *)alloca(salt_len + __alignof__(uint32_t));
+ salt = copied_salt = memcpy(tmp + __alignof__(uint32_t)
+ - (tmp - (char *)0) % __alignof__(uint32_t),
+ salt, salt_len);
}
- /* Prepare for the real work. */
- sha256_init_ctx (&ctx);
-
- /* Add the key string. */
- sha256_process_bytes (key, key_len, &ctx);
-
- /* The last part is the salt string. This must be at most 8
- characters and it ends at the first `$' character (for
- compatibility with existing implementations). */
- sha256_process_bytes (salt, salt_len, &ctx);
-
-
- /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
- final result will be added to the first context. */
- sha256_init_ctx (&alt_ctx);
-
- /* Add key. */
- sha256_process_bytes (key, key_len, &alt_ctx);
-
- /* Add salt. */
- sha256_process_bytes (salt, salt_len, &alt_ctx);
-
- /* Add key again. */
- sha256_process_bytes (key, key_len, &alt_ctx);
-
- /* Now get result of this (32 bytes) and add it to the other
- context. */
- sha256_finish_ctx (&alt_ctx, alt_result);
-
- /* Add for any character in the key one byte of the alternate sum. */
- for (cnt = key_len; cnt > 32; cnt -= 32)
- sha256_process_bytes (alt_result, 32, &ctx);
- sha256_process_bytes (alt_result, cnt, &ctx);
-
- /* Take the binary representation of the length of the key and for every
- 1 add the alternate sum, for every 0 the key. */
- for (cnt = key_len; cnt > 0; cnt >>= 1)
- if ((cnt & 1) != 0)
- sha256_process_bytes (alt_result, 32, &ctx);
- else
- sha256_process_bytes (key, key_len, &ctx);
-
- /* Create intermediate result. */
- sha256_finish_ctx (&ctx, alt_result);
-
- /* Start computation of P byte sequence. */
- sha256_init_ctx (&alt_ctx);
-
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < key_len; ++cnt)
- sha256_process_bytes (key, key_len, &alt_ctx);
-
- /* Finish the digest. */
- sha256_finish_ctx (&alt_ctx, temp_result);
-
- /* Create byte sequence P. */
- cp = p_bytes = alloca (key_len);
- for (cnt = key_len; cnt >= 32; cnt -= 32)
- cp = mempcpy (cp, temp_result, 32);
- memcpy (cp, temp_result, cnt);
-
- /* Start computation of S byte sequence. */
- sha256_init_ctx (&alt_ctx);
-
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
- sha256_process_bytes (salt, salt_len, &alt_ctx);
-
- /* Finish the digest. */
- sha256_finish_ctx (&alt_ctx, temp_result);
-
- /* Create byte sequence S. */
- cp = s_bytes = alloca (salt_len);
- for (cnt = salt_len; cnt >= 32; cnt -= 32)
- cp = mempcpy (cp, temp_result, 32);
- memcpy (cp, temp_result, cnt);
-
- /* Repeatedly run the collected hash value through SHA256 to burn
- CPU cycles. */
- for (cnt = 0; cnt < rounds; ++cnt)
- {
- /* New context. */
- sha256_init_ctx (&ctx);
-
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha256_process_bytes (p_bytes, key_len, &ctx);
- else
- sha256_process_bytes (alt_result, 32, &ctx);
-
- /* Add salt for numbers not divisible by 3. */
- if (cnt % 3 != 0)
- sha256_process_bytes (s_bytes, salt_len, &ctx);
-
- /* Add key for numbers not divisible by 7. */
- if (cnt % 7 != 0)
- sha256_process_bytes (p_bytes, key_len, &ctx);
-
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha256_process_bytes (alt_result, 32, &ctx);
- else
- sha256_process_bytes (p_bytes, key_len, &ctx);
-
- /* Create intermediate result. */
- sha256_finish_ctx (&ctx, alt_result);
+ /* Prepare for the real work. */
+ sha256_init_ctx(&ctx);
+
+ /* Add the key string. */
+ sha256_process_bytes(key, key_len, &ctx);
+
+ /* The last part is the salt string. This must be at most 8
+ characters and it ends at the first `$' character (for
+ compatibility with existing implementations). */
+ sha256_process_bytes(salt, salt_len, &ctx);
+
+ /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
+ final result will be added to the first context. */
+ sha256_init_ctx(&alt_ctx);
+
+ /* Add key. */
+ sha256_process_bytes(key, key_len, &alt_ctx);
+
+ /* Add salt. */
+ sha256_process_bytes(salt, salt_len, &alt_ctx);
+
+ /* Add key again. */
+ sha256_process_bytes(key, key_len, &alt_ctx);
+
+ /* Now get result of this (32 bytes) and add it to the other
+ context. */
+ sha256_finish_ctx(&alt_ctx, alt_result);
+
+ /* Add for any character in the key one byte of the alternate sum. */
+ for (cnt = key_len; cnt > 32; cnt -= 32)
+ sha256_process_bytes(alt_result, 32, &ctx);
+ sha256_process_bytes(alt_result, cnt, &ctx);
+
+ /* Take the binary representation of the length of the key and for every
+ 1 add the alternate sum, for every 0 the key. */
+ for (cnt = key_len; cnt > 0; cnt >>= 1)
+ if ((cnt & 1) != 0)
+ sha256_process_bytes(alt_result, 32, &ctx);
+ else
+ sha256_process_bytes(key, key_len, &ctx);
+
+ /* Create intermediate result. */
+ sha256_finish_ctx(&ctx, alt_result);
+
+ /* Start computation of P byte sequence. */
+ sha256_init_ctx(&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < key_len; ++cnt)
+ sha256_process_bytes(key, key_len, &alt_ctx);
+
+ /* Finish the digest. */
+ sha256_finish_ctx(&alt_ctx, temp_result);
+
+ /* Create byte sequence P. */
+ cp = p_bytes = alloca(key_len);
+ for (cnt = key_len; cnt >= 32; cnt -= 32)
+ cp = mempcpy(cp, temp_result, 32);
+ memcpy(cp, temp_result, cnt);
+
+ /* Start computation of S byte sequence. */
+ sha256_init_ctx(&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
+ sha256_process_bytes(salt, salt_len, &alt_ctx);
+
+ /* Finish the digest. */
+ sha256_finish_ctx(&alt_ctx, temp_result);
+
+ /* Create byte sequence S. */
+ cp = s_bytes = alloca(salt_len);
+ for (cnt = salt_len; cnt >= 32; cnt -= 32)
+ cp = mempcpy(cp, temp_result, 32);
+ memcpy(cp, temp_result, cnt);
+
+ /* Repeatedly run the collected hash value through SHA256 to burn
+ CPU cycles. */
+ for (cnt = 0; cnt < rounds; ++cnt) {
+ /* New context. */
+ sha256_init_ctx(&ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ sha256_process_bytes(p_bytes, key_len, &ctx);
+ else
+ sha256_process_bytes(alt_result, 32, &ctx);
+
+ /* Add salt for numbers not divisible by 3. */
+ if (cnt % 3 != 0)
+ sha256_process_bytes(s_bytes, salt_len, &ctx);
+
+ /* Add key for numbers not divisible by 7. */
+ if (cnt % 7 != 0)
+ sha256_process_bytes(p_bytes, key_len, &ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ sha256_process_bytes(alt_result, 32, &ctx);
+ else
+ sha256_process_bytes(p_bytes, key_len, &ctx);
+
+ /* Create intermediate result. */
+ sha256_finish_ctx(&ctx, alt_result);
}
- /* Now we can construct the result string. It consists of three
- parts. */
- cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
- buflen -= sizeof (sha256_salt_prefix) - 1;
+ /* Now we can construct the result string. It consists of three
+ parts. */
+ cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
+ buflen -= sizeof(sha256_salt_prefix) - 1;
- if (rounds_custom)
- {
- int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
- sha256_rounds_prefix, rounds);
- cp += n;
- buflen -= n;
+ if (rounds_custom) {
+ int n = snprintf(cp, MAX(0, buflen), "%s%zu$",
+ sha256_rounds_prefix, rounds);
+ cp += n;
+ buflen -= n;
}
- cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
- buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
+ cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len));
+ buflen -= MIN((size_t) MAX(0, buflen), salt_len);
- if (buflen > 0)
- {
- *cp++ = '$';
- --buflen;
+ if (buflen > 0) {
+ *cp++ = '$';
+ --buflen;
}
-
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
@@ -516,210 +481,200 @@ sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
} \
} while (0)
- b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
- b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
- b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
- b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
- b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
- b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
- b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
- b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
- b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
- b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
- b64_from_24bit (0, alt_result[31], alt_result[30], 3);
- if (buflen <= 0)
- {
- errno = ERANGE;
- buffer = NULL;
- }
- else
- *cp = '\0'; /* Terminate the string. */
-
- /* Clear the buffer for the intermediate result so that people
- attaching to processes or reading core dumps cannot get any
- information. We do it in this way to clear correct_words[]
- inside the SHA256 implementation as well. */
- sha256_init_ctx (&ctx);
- sha256_finish_ctx (&ctx, alt_result);
- memset (temp_result, '\0', sizeof (temp_result));
- memset (p_bytes, '\0', key_len);
- memset (s_bytes, '\0', salt_len);
- memset (&ctx, '\0', sizeof (ctx));
- memset (&alt_ctx, '\0', sizeof (alt_ctx));
- if (copied_key != NULL)
- memset (copied_key, '\0', key_len);
- if (copied_salt != NULL)
- memset (copied_salt, '\0', salt_len);
-
- return buffer;
+ b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
+ b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
+ b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
+ b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
+ b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
+ b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
+ b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
+ b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
+ b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
+ b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
+ b64_from_24bit(0, alt_result[31], alt_result[30], 3);
+ if (buflen <= 0) {
+ errno = ERANGE;
+ buffer = NULL;
+ } else
+ *cp = '\0'; /* Terminate the string. */
+
+ /* Clear the buffer for the intermediate result so that people
+ attaching to processes or reading core dumps cannot get any
+ information. We do it in this way to clear correct_words[]
+ inside the SHA256 implementation as well. */
+ sha256_init_ctx(&ctx);
+ sha256_finish_ctx(&ctx, alt_result);
+ memset(temp_result, '\0', sizeof(temp_result));
+ memset(p_bytes, '\0', key_len);
+ memset(s_bytes, '\0', salt_len);
+ memset(&ctx, '\0', sizeof(ctx));
+ memset(&alt_ctx, '\0', sizeof(alt_ctx));
+ if (copied_key != NULL)
+ memset(copied_key, '\0', key_len);
+ if (copied_salt != NULL)
+ memset(copied_salt, '\0', salt_len);
+
+ return buffer;
}
-
/* This entry point is equivalent to the `crypt' function in Unix
libcs. */
-char *
-sha256_crypt (const char *key, const char *salt)
+char *sha256_crypt(const char *key, const char *salt)
{
- /* We don't want to have an arbitrary limit in the size of the
- password. We can compute an upper bound for the size of the
- result in advance and so we can prepare the buffer we pass to
- `sha256_crypt_r'. */
- static char *buffer;
- static int buflen;
- int needed = (sizeof (sha256_salt_prefix) - 1
- + sizeof (sha256_rounds_prefix) + 9 + 1
- + strlen (salt) + 1 + 43 + 1);
-
- if (buflen < needed)
- {
- char *new_buffer = (char *) realloc (buffer, needed);
- if (new_buffer == NULL)
- return NULL;
-
- buffer = new_buffer;
- buflen = needed;
+ /* We don't want to have an arbitrary limit in the size of the
+ password. We can compute an upper bound for the size of the
+ result in advance and so we can prepare the buffer we pass to
+ `sha256_crypt_r'. */
+ static char *buffer;
+ static int buflen;
+ int needed = (sizeof(sha256_salt_prefix) - 1
+ + sizeof(sha256_rounds_prefix) + 9 + 1
+ + strlen(salt) + 1 + 43 + 1);
+
+ if (buflen < needed) {
+ char *new_buffer = (char *)realloc(buffer, needed);
+ if (new_buffer == NULL)
+ return NULL;
+
+ buffer = new_buffer;
+ buflen = needed;
}
- return sha256_crypt_r (key, salt, buffer, buflen);
+ return sha256_crypt_r(key, salt, buffer, buflen);
}
-
#ifdef TEST
-static const struct
-{
- const char *input;
- const char result[32];
-} tests[] =
- {
+static const struct {
+ const char *input;
+ const char result[32];
+} tests[] = {
/* Test vectors from FIPS 180-2: appendix B.1. */
- { "abc",
- "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
- "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" },
- /* Test vectors from FIPS 180-2: appendix B.2. */
- { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
- "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
- "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
- /* Test vectors from the NESSIE project. */
- { "",
- "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
- "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" },
- { "a",
- "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
- "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" },
- { "message digest",
- "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
- "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" },
- { "abcdefghijklmnopqrstuvwxyz",
- "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
- "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" },
- { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
- "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
- "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
- { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
- "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
- "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" },
- { "123456789012345678901234567890123456789012345678901234567890"
- "12345678901234567890",
- "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
- "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" }
- };
-#define ntests (sizeof (tests) / sizeof (tests[0]))
+ {
+ "abc",
+ "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
+ "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"},
+ /* Test vectors from FIPS 180-2: appendix B.2. */
+ {
+ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
+ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
+ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"},
+ /* Test vectors from the NESSIE project. */
+ {
+ "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
+ "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"},
+ {
+ "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
+ "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"},
+ {
+ "message digest",
+ "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
+ "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"},
+ {
+ "abcdefghijklmnopqrstuvwxyz",
+ "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
+ "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"},
+ {
+ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
+ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
+ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"},
+ {
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
+ "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
+ "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"},
+ {
+ "123456789012345678901234567890123456789012345678901234567890"
+ "12345678901234567890",
+ "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
+ "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"}
+};
+#define ntests (sizeof (tests) / sizeof (tests[0]))
-static const struct
-{
- const char *salt;
- const char *input;
- const char *expected;
-} tests2[] =
-{
- { "$5$saltstring", "Hello world!",
- "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" },
- { "$5$rounds=10000$saltstringsaltstring", "Hello world!",
- "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
- "opqey6IcA" },
- { "$5$rounds=5000$toolongsaltstring", "This is just a test",
- "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
- "mGRcvxa5" },
- { "$5$rounds=1400$anotherlongsaltstring",
- "a very much longer text to encrypt. This one even stretches over more"
- "than one line.",
- "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
- "oP84Bnq1" },
- { "$5$rounds=77777$short",
- "we have a short salt string but not a short password",
- "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" },
- { "$5$rounds=123456$asaltof16chars..", "a short string",
- "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
- "cZKmF/wJvD" },
- { "$5$rounds=10$roundstoolow", "the minimum number is still observed",
- "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
- "2bIC" },
-};
+static const struct {
+ const char *salt;
+ const char *input;
+ const char *expected;
+} tests2[] = {
+ {
+ "$5$saltstring", "Hello world!",
+ "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"}, {
+ "$5$rounds=10000$saltstringsaltstring", "Hello world!",
+ "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
+ "opqey6IcA"}, {
+ "$5$rounds=5000$toolongsaltstring", "This is just a test",
+ "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
+ "mGRcvxa5"}, {
+ "$5$rounds=1400$anotherlongsaltstring",
+ "a very much longer text to encrypt. This one even stretches over more"
+ "than one line.",
+ "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
+ "oP84Bnq1"}, {
+ "$5$rounds=77777$short",
+ "we have a short salt string but not a short password",
+ "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"},
+ {
+ "$5$rounds=123456$asaltof16chars..", "a short string",
+ "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
+ "cZKmF/wJvD"}, {
+"$5$rounds=10$roundstoolow", "the minimum number is still observed",
+ "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
+ "2bIC"},};
#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
-
-int
-main (void)
+int main(void)
{
- struct sha256_ctx ctx;
- char sum[32];
- int result = 0;
- int cnt;
-
- for (cnt = 0; cnt < (int) ntests; ++cnt)
- {
- sha256_init_ctx (&ctx);
- sha256_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx);
- sha256_finish_ctx (&ctx, sum);
- if (memcmp (tests[cnt].result, sum, 32) != 0)
- {
- printf ("test %d run %d failed\n", cnt, 1);
- result = 1;
+ struct sha256_ctx ctx;
+ char sum[32];
+ int result = 0;
+ int cnt;
+
+ for (cnt = 0; cnt < (int)ntests; ++cnt) {
+ sha256_init_ctx(&ctx);
+ sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx);
+ sha256_finish_ctx(&ctx, sum);
+ if (memcmp(tests[cnt].result, sum, 32) != 0) {
+ printf("test %d run %d failed\n", cnt, 1);
+ result = 1;
}
- sha256_init_ctx (&ctx);
- for (int i = 0; tests[cnt].input[i] != '\0'; ++i)
- sha256_process_bytes (&tests[cnt].input[i], 1, &ctx);
- sha256_finish_ctx (&ctx, sum);
- if (memcmp (tests[cnt].result, sum, 32) != 0)
- {
- printf ("test %d run %d failed\n", cnt, 2);
- result = 1;
+ sha256_init_ctx(&ctx);
+ for (int i = 0; tests[cnt].input[i] != '\0'; ++i)
+ sha256_process_bytes(&tests[cnt].input[i], 1, &ctx);
+ sha256_finish_ctx(&ctx, sum);
+ if (memcmp(tests[cnt].result, sum, 32) != 0) {
+ printf("test %d run %d failed\n", cnt, 2);
+ result = 1;
}
}
- /* Test vector from FIPS 180-2: appendix B.3. */
- char buf[1000];
- memset (buf, 'a', sizeof (buf));
- sha256_init_ctx (&ctx);
- for (int i = 0; i < 1000; ++i)
- sha256_process_bytes (buf, sizeof (buf), &ctx);
- sha256_finish_ctx (&ctx, sum);
- static const char expected[32] =
- "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
- "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
- if (memcmp (expected, sum, 32) != 0)
- {
- printf ("test %d failed\n", cnt);
- result = 1;
+ /* Test vector from FIPS 180-2: appendix B.3. */
+ char buf[1000];
+ memset(buf, 'a', sizeof(buf));
+ sha256_init_ctx(&ctx);
+ for (int i = 0; i < 1000; ++i)
+ sha256_process_bytes(buf, sizeof(buf), &ctx);
+ sha256_finish_ctx(&ctx, sum);
+ static const char expected[32] =
+ "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
+ "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
+ if (memcmp(expected, sum, 32) != 0) {
+ printf("test %d failed\n", cnt);
+ result = 1;
}
- for (cnt = 0; cnt < ntests2; ++cnt)
- {
- char *cp = sha256_crypt (tests2[cnt].input, tests2[cnt].salt);
+ for (cnt = 0; cnt < ntests2; ++cnt) {
+ char *cp = sha256_crypt(tests2[cnt].input, tests2[cnt].salt);
- if (strcmp (cp, tests2[cnt].expected) != 0)
- {
- printf ("test %d: expected \"%s\", got \"%s\"\n",
- cnt, tests2[cnt].expected, cp);
- result = 1;
+ if (strcmp(cp, tests2[cnt].expected) != 0) {
+ printf("test %d: expected \"%s\", got \"%s\"\n",
+ cnt, tests2[cnt].expected, cp);
+ result = 1;
}
}
- if (result == 0)
- puts ("all tests OK");
+ if (result == 0)
+ puts("all tests OK");
- return result;
+ return result;
}
#endif