/* ----------------------------------------------------------------------- * * * Copyright 1996-2020 The NASM Authors - All Rights Reserved * See the file AUTHORS included with the NASM distribution for * the specific copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following * conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * ----------------------------------------------------------------------- */ /* * parser.c source line parser for the Netwide Assembler */ #include "compiler.h" #include "nctype.h" #include "nasm.h" #include "insns.h" #include "nasmlib.h" #include "error.h" #include "stdscan.h" #include "eval.h" #include "parser.h" #include "floats.h" #include "assemble.h" #include "tables.h" static int end_expression_next(void); static struct tokenval tokval; static void process_size_override(insn *result, operand *op) { if (tasm_compatible_mode) { switch (tokval.t_integer) { /* For TASM compatibility a size override inside the * brackets changes the size of the operand, not the * address type of the operand as it does in standard * NASM syntax. Hence: * * mov eax,[DWORD val] * * is valid syntax in TASM compatibility mode. Note that * you lose the ability to override the default address * type for the instruction, but we never use anything * but 32-bit flat model addressing in our code. */ case S_BYTE: op->type |= BITS8; break; case S_WORD: op->type |= BITS16; break; case S_DWORD: case S_LONG: op->type |= BITS32; break; case S_QWORD: op->type |= BITS64; break; case S_TWORD: op->type |= BITS80; break; case S_OWORD: op->type |= BITS128; break; default: nasm_nonfatal("invalid operand size specification"); break; } } else { /* Standard NASM compatible syntax */ switch (tokval.t_integer) { case S_NOSPLIT: op->eaflags |= EAF_TIMESTWO; break; case S_REL: op->eaflags |= EAF_REL; break; case S_ABS: op->eaflags |= EAF_ABS; break; case S_BYTE: op->disp_size = 8; op->eaflags |= EAF_BYTEOFFS; break; case P_A16: case P_A32: case P_A64: if (result->prefixes[PPS_ASIZE] && result->prefixes[PPS_ASIZE] != tokval.t_integer) nasm_nonfatal("conflicting address size specifications"); else result->prefixes[PPS_ASIZE] = tokval.t_integer; break; case S_WORD: op->disp_size = 16; op->eaflags |= EAF_WORDOFFS; break; case S_DWORD: case S_LONG: op->disp_size = 32; op->eaflags |= EAF_WORDOFFS; break; case S_QWORD: op->disp_size = 64; op->eaflags |= EAF_WORDOFFS; break; default: nasm_nonfatal("invalid size specification in" " effective address"); break; } } } /* * Braced keywords are parsed here. opmask and zeroing * decorators can be placed in any order. e.g. zmm1 {k2}{z} or zmm2 * {z}{k3} decorator(s) are placed at the end of an operand. */ static bool parse_braces(decoflags_t *decoflags) { int i, j; i = tokval.t_type; while (true) { switch (i) { case TOKEN_OPMASK: if (*decoflags & OPMASK_MASK) { nasm_nonfatal("opmask k%"PRIu64" is already set", *decoflags & OPMASK_MASK); *decoflags &= ~OPMASK_MASK; } *decoflags |= VAL_OPMASK(nasm_regvals[tokval.t_integer]); break; case TOKEN_DECORATOR: j = tokval.t_integer; switch (j) { case BRC_Z: *decoflags |= Z_MASK; break; case BRC_1TO2: case BRC_1TO4: case BRC_1TO8: case BRC_1TO16: case BRC_1TO32: *decoflags |= BRDCAST_MASK | VAL_BRNUM(j - BRC_1TO2); break; default: nasm_nonfatal("{%s} is not an expected decorator", tokval.t_charptr); break; } break; case ',': case TOKEN_EOS: return false; default: nasm_nonfatal("only a series of valid decorators expected"); return true; } i = stdscan(NULL, &tokval); } } static inline unused_func const expr *next_expr(const expr *e, const expr **next_list) { e++; if (!e->type) { if (next_list) { e = *next_list; *next_list = NULL; } else { e = NULL; } } return e; } static inline void init_operand(operand *op) { memset(op, 0, sizeof *op); op->basereg = -1; op->indexreg = -1; op->segment = NO_SEG; op->wrt = NO_SEG; } static int parse_mref(operand *op, const expr *e) { int b, i, s; /* basereg, indexreg, scale */ int64_t o; /* offset */ b = op->basereg; i = op->indexreg; s = op->scale; o = op->offset; for (; e->type; e++) { if (e->type <= EXPR_REG_END) { bool is_gpr = is_class(REG_GPR,nasm_reg_flags[e->type]); if (is_gpr && e->value == 1 && b == -1) { /* It can be basereg */ b = e->type; } else if (i == -1) { /* Must be index register */ i = e->type; s = e->value; } else { if (b == -1) nasm_nonfatal("invalid effective address: two index registers"); else if (!is_gpr) nasm_nonfatal("invalid effective address: impossible register"); else nasm_nonfatal("invalid effective address: too many registers"); return -1; } } else if (e->type == EXPR_UNKNOWN) { op->opflags |= OPFLAG_UNKNOWN; } else if (e->type == EXPR_SIMPLE) { o += e->value; } else if (e->type == EXPR_WRT) { op->wrt = e->value; } else if (e->type >= EXPR_SEGBASE) { if (e->value == 1) { if (op->segment != NO_SEG) { nasm_nonfatal("invalid effective address: multiple base segments"); return -1; } op->segment = e->type - EXPR_SEGBASE; } else if (e->value == -1 && e->type == location.segment + EXPR_SEGBASE && !(op->opflags & OPFLAG_RELATIVE)) { op->opflags |= OPFLAG_RELATIVE; } else { nasm_nonfatal("invalid effective address: impossible segment base multiplier"); return -1; } } else { nasm_nonfatal("invalid effective address: bad subexpression type"); return -1; } } op->basereg = b; op->indexreg = i; op->scale = s; op->offset = o; return 0; } static void mref_set_optype(operand *op) { int b = op->basereg; int i = op->indexreg; int s = op->scale; /* It is memory, but it can match any r/m operand */ op->type |= MEMORY_ANY; if (b == -1 && (i == -1 || s == 0)) { int is_rel = globalbits == 64 && !(op->eaflags & EAF_ABS) && ((globalrel && !(op->eaflags & EAF_FSGS)) || (op->eaflags & EAF_REL)); op->type |= is_rel ? IP_REL : MEM_OFFS; } if (i != -1) { opflags_t iclass = nasm_reg_flags[i]; if (is_class(XMMREG,iclass)) op->type |= XMEM; else if (is_class(YMMREG,iclass)) op->type |= YMEM; else if (is_class(ZMMREG,iclass)) op->type |= ZMEM; } } /* * Convert an expression vector returned from evaluate() into an * extop structure. Return zero on success. Note that the eop * already has dup and elem set, so we can't clear it here. */ static int value_to_extop(expr *vect, extop *eop, int32_t myseg) { eop->type = EOT_DB_NUMBER; eop->val.num.offset = 0; eop->val.num.segment = eop->val.num.wrt = NO_SEG; eop->val.num.relative = false; for (; vect->type; vect++) { if (!vect->value) /* zero term, safe to ignore */ continue; if (vect->type <= EXPR_REG_END) /* false if a register is present */ return -1; if (vect->type == EXPR_UNKNOWN) /* something we can't resolve yet */ return 0; if (vect->type == EXPR_SIMPLE) { /* Simple number expression */ eop->val.num.offset += vect->value; continue; } if (eop->val.num.wrt == NO_SEG && !eop->val.num.relative && vect->type == EXPR_WRT) { /* WRT term */ eop->val.num.wrt = vect->value; continue; } if (!eop->val.num.relative && vect->type == EXPR_SEGBASE + myseg && vect->value == -1) { /* Expression of the form: foo - $ */ eop->val.num.relative = true; continue; } if (eop->val.num.segment == NO_SEG && vect->type >= EXPR_SEGBASE && vect->value == 1) { eop->val.num.segment = vect->type - EXPR_SEGBASE; continue; } /* Otherwise, badness */ return -1; } /* We got to the end and it was all okay */ return 0; } /* * Parse an extended expression, used by db et al. "elem" is the element * size; initially comes from the specific opcode (e.g. db == 1) but * can be overridden. */ static int parse_eops(extop **result, bool critical, int elem) { extop *eop = NULL, *prev = NULL; extop **tail = result; int sign; int i = tokval.t_type; int oper_num = 0; bool do_subexpr = false; *tail = NULL; /* End of string is obvious; ) ends a sub-expression list e.g. DUP */ for (i = tokval.t_type; i != TOKEN_EOS; i = stdscan(NULL, &tokval)) { char endparen = ')'; /* Is a right paren the end of list? */ if (i == ')') break; if (!eop) { nasm_new(eop); eop->dup = 1; eop->elem = elem; do_subexpr = false; } sign = +1; /* * end_expression_next() here is to distinguish this from * a string used as part of an expression... */ if (i == TOKEN_QMARK) { eop->type = EOT_DB_RESERVE; } else if (do_subexpr && i == '(') { extop *subexpr; stdscan(NULL, &tokval); /* Skip paren */ if (parse_eops(&eop->val.subexpr, critical, eop->elem) < 0) goto fail; subexpr = eop->val.subexpr; if (!subexpr) { /* Subexpression is empty */ eop->type = EOT_NOTHING; } else if (!subexpr->next) { /* * Subexpression is a single element, flatten. * Note that if subexpr has an allocated buffer associated * with it, freeing it would free the buffer, too, so * we need to move subexpr up, not eop down. */ if (!subexpr->elem) subexpr->elem = eop->elem; subexpr->dup *= eop->dup; nasm_free(eop); eop = subexpr; } else { eop->type = EOT_EXTOP; } /* We should have ended on a closing paren */ if (tokval.t_type != ')') { nasm_nonfatal("expected `)' after subexpression, got `%s'", i == TOKEN_EOS ? "end of line" : tokval.t_charptr); goto fail; } endparen = 0; /* This time the paren is not the end */ } else if (i == '%') { /* %(expression_list) */ do_subexpr = true; continue; } else if (i == TOKEN_SIZE) { /* Element size override */ eop->elem = tokval.t_inttwo; do_subexpr = true; continue; } else if (i == TOKEN_STR && end_expression_next()) { eop->type = EOT_DB_STRING; eop->val.string.data = tokval.t_charptr; eop->val.string.len = tokval.t_inttwo; } else if (i == TOKEN_STRFUNC) { bool parens = false; const char *funcname = tokval.t_charptr; enum strfunc func = tokval.t_integer; i = stdscan(NULL, &tokval); if (i == '(') { parens = true; endparen = 0; i = stdscan(NULL, &tokval); } if (i != TOKEN_STR) { nasm_nonfatal("%s must be followed by a string constant", funcname); eop->type = EOT_NOTHING; } else { eop->type = EOT_DB_STRING_FREE; eop->val.string.len = string_transform(tokval.t_charptr, tokval.t_inttwo, &eop->val.string.data, func); if (eop->val.string.len == (size_t)-1) { nasm_nonfatal("invalid input string to %s", funcname); eop->type = EOT_NOTHING; } } if (parens && i && i != ')') { i = stdscan(NULL, &tokval); if (i != ')') nasm_nonfatal("unterminated %s function", funcname); } } else if (i == '-' || i == '+') { char *save = stdscan_get(); struct tokenval tmptok; sign = (i == '-') ? -1 : 1; if (stdscan(NULL, &tmptok) != TOKEN_FLOAT) { stdscan_set(save); goto is_expression; } else { tokval = tmptok; goto is_float; } } else if (i == TOKEN_FLOAT) { enum floatize fmt; is_float: eop->type = EOT_DB_FLOAT; fmt = float_deffmt(eop->elem); if (fmt == FLOAT_ERR) { nasm_nonfatal("no %d-bit floating-point format supported", eop->elem << 3); eop->val.string.len = 0; } else if (eop->elem < 1) { nasm_nonfatal("floating-point constant" " encountered in unknown instruction"); /* * fix suggested by Pedro Gimeno... original line was: * eop->type = EOT_NOTHING; */ eop->val.string.len = 0; } else { eop->val.string.len = eop->elem; eop = nasm_realloc(eop, sizeof(extop) + eop->val.string.len); eop->val.string.data = (char *)eop + sizeof(extop); if (!float_const(tokval.t_charptr, sign, (uint8_t *)eop->val.string.data, fmt)) eop->val.string.len = 0; } if (!eop->val.string.len) eop->type = EOT_NOTHING; } else { /* anything else, assume it is an expression */ expr *value; is_expression: value = evaluate(stdscan, NULL, &tokval, NULL, critical, NULL); i = tokval.t_type; if (!value) /* Error in evaluator */ goto fail; if (tokval.t_flag & TFLAG_DUP) { /* Expression followed by DUP */ if (!is_simple(value)) { nasm_nonfatal("non-constant argument supplied to DUP"); goto fail; } else if (value->value < 0) { nasm_nonfatal("negative argument supplied to DUP"); goto fail; } eop->dup *= (size_t)value->value; do_subexpr = true; continue; } if (value_to_extop(value, eop, location.segment)) { nasm_nonfatal("expression is not simple or relocatable"); } } if (eop->dup == 0 || eop->type == EOT_NOTHING) { nasm_free(eop); } else if (eop->type == EOT_DB_RESERVE && prev && prev->type == EOT_DB_RESERVE && prev->elem == eop->elem) { /* Coalesce multiple EOT_DB_RESERVE */ prev->dup += eop->dup; nasm_free(eop); } else { /* Add this eop to the end of the chain */ prev = eop; *tail = eop; tail = &eop->next; } oper_num++; eop = NULL; /* Done with this operand */ /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == TOKEN_EOS || i == endparen) /* Already at end? */ break; if (i != ',') { i = stdscan(NULL, &tokval); /* eat the comma or final paren */ if (i == TOKEN_EOS || i == ')') /* got end of expression */ break; if (i != ',') { nasm_nonfatal("comma expected after operand"); goto fail; } } } return oper_num; fail: if (eop) nasm_free(eop); return -1; } insn *parse_line(char *buffer, insn *result) { bool insn_is_label = false; struct eval_hints hints; int opnum; bool critical; bool first; bool recover; bool far_jmp_ok; int i; nasm_static_assert(P_none == 0); restart_parse: first = true; result->forw_ref = false; stdscan_reset(); stdscan_set(buffer); i = stdscan(NULL, &tokval); memset(result->prefixes, P_none, sizeof(result->prefixes)); result->times = 1; /* No TIMES either yet */ result->label = NULL; /* Assume no label */ result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialize this */ result->evex_rm = 0; /* Ensure EVEX rounding mode is reset */ result->evex_brerop = -1; /* Reset EVEX broadcasting/ER op position */ /* Ignore blank lines */ if (i == TOKEN_EOS) goto fail; if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i != TOKEN_REG || !IS_SREG(tokval.t_integer))) { nasm_nonfatal("label or instruction expected at start of line"); goto fail; } if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) { /* there's a label here */ first = false; result->label = tokval.t_charptr; i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0) { /*! *!label-orphan [on] labels alone on lines without trailing `:' *!=orphan-labels *! warns about source lines which contain no instruction but define *! a label without a trailing colon. This is most likely indicative *! of a typo, but is technically correct NASM syntax (see \k{syntax}.) */ nasm_warn(WARN_LABEL_ORPHAN , "label alone on a line without a colon might be in error"); } if (i != TOKEN_INSN || tokval.t_integer != I_EQU) { /* * FIXME: location.segment could be NO_SEG, in which case * it is possible we should be passing 'absolute.segment'. Look into this. * Work out whether that is *really* what we should be doing. * Generally fix things. I think this is right as it is, but * am still not certain. */ define_label(result->label, in_absolute ? absolute.segment : location.segment, location.offset, true); } } /* Just a label here */ if (i == TOKEN_EOS) goto fail; while (i) { int slot = PPS_SEG; if (i == TOKEN_PREFIX) { slot = tokval.t_inttwo; if (slot == PPS_TIMES) { /* TIMES is a very special prefix */ expr *value; i = stdscan(NULL, &tokval); value = evaluate(stdscan, NULL, &tokval, NULL, pass_stable(), NULL); i = tokval.t_type; if (!value) /* Error in evaluator */ goto fail; if (!is_simple(value)) { nasm_nonfatal("non-constant argument supplied to TIMES"); result->times = 1; } else { result->times = value->value; if (value->value < 0) { nasm_nonfatalf(ERR_PASS2, "TIMES value %"PRId64" is negative", value->value); result->times = 0; } } first = false; continue; } } else if (i == TOKEN_REG && IS_SREG(tokval.t_integer)) { slot = PPS_SEG; first = false; } else { break; /* Not a prefix */ } if (result->prefixes[slot]) { if (result->prefixes[slot] == tokval.t_integer) nasm_warn(WARN_OTHER, "instruction has redundant prefixes"); else nasm_nonfatal("instruction has conflicting prefixes"); } result->prefixes[slot] = tokval.t_integer; i = stdscan(NULL, &tokval); first = false; } if (i != TOKEN_INSN) { int j; enum prefixes pfx; for (j = 0; j < MAXPREFIX; j++) { if ((pfx = result->prefixes[j]) != P_none) break; } if (i == 0 && pfx != P_none) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; nasm_zero(result->oprs); result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { nasm_nonfatal("parser: instruction expected"); goto fail; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * INCBIN cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. */ critical = pass_final() || (result->opcode == I_INCBIN); if (opcode_is_db(result->opcode) || result->opcode == I_INCBIN) { int oper_num; i = stdscan(NULL, &tokval); if (first && i == ':') { /* Really a label */ insn_is_label = true; goto restart_parse; } first = false; oper_num = parse_eops(&result->eops, critical, db_bytes(result->opcode)); if (oper_num < 0) goto fail; if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) nasm_nonfatal("`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) nasm_nonfatal("`incbin': second parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) nasm_nonfatal("`incbin': third parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) nasm_nonfatal("`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ goto fail; } else { /* DB et al */ result->operands = oper_num; if (oper_num == 0) /*! *!db-empty [on] no operand for data declaration *! warns about a \c{DB}, \c{DW}, etc declaration *! with no operands, producing no output. *! This is permitted, but often indicative of an error. *! See \k{db}. */ nasm_warn(WARN_DB_EMPTY, "no operand for data declaration"); } return result; } /* * Now we begin to parse the operands. There may be up to four * of these, separated by commas, and terminated by a zero token. */ far_jmp_ok = result->opcode == I_JMP || result->opcode == I_CALL; for (opnum = 0; opnum < MAX_OPERANDS; opnum++) { operand *op = &result->oprs[opnum]; expr *value; /* used most of the time */ bool mref = false; /* is this going to be a memory ref? */ int bracket = 0; /* is it a [] mref, or a "naked" mref? */ bool mib; /* compound (mib) mref? */ int setsize = 0; decoflags_t brace_flags = 0; /* flags for decorators in braces */ init_operand(op); i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; /* end of operands: get out of here */ else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; op->type = 0; /* so far, no override */ /* size specifiers */ while (i == TOKEN_SPECIAL || i == TOKEN_SIZE) { switch (tokval.t_integer) { case S_BYTE: if (!setsize) /* we want to use only the first */ op->type |= BITS8; setsize = 1; break; case S_WORD: if (!setsize) op->type |= BITS16; setsize = 1; break; case S_DWORD: case S_LONG: if (!setsize) op->type |= BITS32; setsize = 1; break; case S_QWORD: if (!setsize) op->type |= BITS64; setsize = 1; break; case S_TWORD: if (!setsize) op->type |= BITS80; setsize = 1; break; case S_OWORD: if (!setsize) op->type |= BITS128; setsize = 1; break; case S_YWORD: if (!setsize) op->type |= BITS256; setsize = 1; break; case S_ZWORD: if (!setsize) op->type |= BITS512; setsize = 1; break; case S_TO: op->type |= TO; break; case S_STRICT: op->type |= STRICT; break; case S_FAR: op->type |= FAR; break; case S_NEAR: op->type |= NEAR; break; case S_SHORT: op->type |= SHORT; break; default: nasm_nonfatal("invalid operand size specification"); } i = stdscan(NULL, &tokval); } if (i == '[' || i == TOKEN_MASM_PTR || i == '&') { /* memory reference */ mref = true; bracket += (i == '['); i = stdscan(NULL, &tokval); } mref_more: if (mref) { bool done = false; bool nofw = false; while (!done) { switch (i) { case TOKEN_SPECIAL: case TOKEN_SIZE: case TOKEN_PREFIX: process_size_override(result, op); break; case '[': bracket++; break; case ',': tokval.t_type = TOKEN_NUM; tokval.t_integer = 0; stdscan_set(stdscan_get() - 1); /* rewind the comma */ done = nofw = true; break; case TOKEN_MASM_FLAT: i = stdscan(NULL, &tokval); if (i != ':') { nasm_nonfatal("unknown use of FLAT in MASM emulation"); nofw = true; } done = true; break; default: done = nofw = true; break; } if (!nofw) i = stdscan(NULL, &tokval); } } value = evaluate(stdscan, NULL, &tokval, &op->opflags, critical, &hints); i = tokval.t_type; if (op->opflags & OPFLAG_FORWARD) { result->forw_ref = true; } if (!value) /* Error in evaluator */ goto fail; if (i == '[' && !bracket) { /* displacement[regs] syntax */ mref = true; parse_mref(op, value); /* Process what we have so far */ goto mref_more; } if (i == ':' && (mref || !far_jmp_ok)) { /* segment override? */ mref = true; /* * Process the segment override. */ if (!IS_SREG(value->type) || value->value != 1 || value[1].type != 0) { nasm_nonfatal("invalid segment override"); } else if (result->prefixes[PPS_SEG]) { nasm_nonfatal("instruction has conflicting segment overrides"); } else { result->prefixes[PPS_SEG] = value->type; if (IS_FSGS(value->type)) op->eaflags |= EAF_FSGS; } i = stdscan(NULL, &tokval); /* then skip the colon */ goto mref_more; } mib = false; if (mref && bracket && i == ',') { /* [seg:base+offset,index*scale] syntax (mib) */ operand o2; /* Index operand */ if (parse_mref(op, value)) goto fail; i = stdscan(NULL, &tokval); /* Eat comma */ value = evaluate(stdscan, NULL, &tokval, &op->opflags, critical, &hints); i = tokval.t_type; if (!value) goto fail; init_operand(&o2); if (parse_mref(&o2, value)) goto fail; if (o2.basereg != -1 && o2.indexreg == -1) { o2.indexreg = o2.basereg; o2.scale = 1; o2.basereg = -1; } if (op->indexreg != -1 || o2.basereg != -1 || o2.offset != 0 || o2.segment != NO_SEG || o2.wrt != NO_SEG) { nasm_nonfatal("invalid mib expression"); goto fail; } op->indexreg = o2.indexreg; op->scale = o2.scale; if (op->basereg != -1) { op->hintbase = op->basereg; op->hinttype = EAH_MAKEBASE; } else if (op->indexreg != -1) { op->hintbase = op->indexreg; op->hinttype = EAH_NOTBASE; } else { op->hintbase = -1; op->hinttype = EAH_NOHINT; } mib = true; } recover = false; if (mref) { if (bracket == 1) { if (i == ']') { bracket--; i = stdscan(NULL, &tokval); } else { nasm_nonfatal("expecting ] at end of memory operand"); recover = true; } } else if (bracket == 0) { /* Do nothing */ } else if (bracket > 0) { nasm_nonfatal("excess brackets in memory operand"); recover = true; } else if (bracket < 0) { nasm_nonfatal("unmatched ] in memory operand"); recover = true; } if (i == TOKEN_DECORATOR || i == TOKEN_OPMASK) { /* parse opmask (and zeroing) after an operand */ recover = parse_braces(&brace_flags); i = tokval.t_type; } if (!recover && i != 0 && i != ',') { nasm_nonfatal("comma, decorator or end of line expected, got %d", i); recover = true; } } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':' && i != TOKEN_DECORATOR && i != TOKEN_OPMASK) { nasm_nonfatal("comma, colon, decorator or end of " "line expected after operand"); recover = true; } else if (i == ':') { op->type |= COLON; } else if (i == TOKEN_DECORATOR || i == TOKEN_OPMASK) { /* parse opmask (and zeroing) after an operand */ recover = parse_braces(&brace_flags); } } if (recover) { do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } /* * now convert the exprs returned from evaluate() * into operand descriptions... */ op->decoflags |= brace_flags; if (mref) { /* it's a memory reference */ /* A mib reference was fully parsed already */ if (!mib) { if (parse_mref(op, value)) goto fail; op->hintbase = hints.base; op->hinttype = hints.type; } mref_set_optype(op); } else if ((op->type & FAR) && !far_jmp_ok) { nasm_nonfatal("invalid use of FAR operand specifier"); recover = true; } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ op->type |= IMMEDIATE; op->opflags |= OPFLAG_UNKNOWN; op->offset = 0; /* don't care */ op->segment = NO_SEG; /* don't care again */ op->wrt = NO_SEG; /* still don't care */ if(optimizing.level >= 0 && !(op->type & STRICT)) { /* Be optimistic */ op->type |= UNITY | SBYTEWORD | SBYTEDWORD | UDWORD | SDWORD; } } else if (is_reloc(value)) { /* it's immediate */ uint64_t n = reloc_value(value); op->type |= IMMEDIATE; op->offset = n; op->segment = reloc_seg(value); op->wrt = reloc_wrt(value); op->opflags |= is_self_relative(value) ? OPFLAG_RELATIVE : 0; if (is_simple(value)) { if (n == 1) op->type |= UNITY; if (optimizing.level >= 0 && !(op->type & STRICT)) { if ((uint32_t) (n + 128) <= 255) op->type |= SBYTEDWORD; if ((uint16_t) (n + 128) <= 255) op->type |= SBYTEWORD; if (n <= UINT64_C(0xFFFFFFFF)) op->type |= UDWORD; if (n + UINT64_C(0x80000000) <= UINT64_C(0xFFFFFFFF)) op->type |= SDWORD; } } } else if (value->type == EXPR_RDSAE) { /* * it's not an operand but a rounding or SAE decorator. * put the decorator information in the (opflag_t) type field * of previous operand. */ opnum--; op--; switch (value->value) { case BRC_RN: case BRC_RU: case BRC_RD: case BRC_RZ: case BRC_SAE: op->decoflags |= (value->value == BRC_SAE ? SAE : ER); result->evex_rm = value->value; break; default: nasm_nonfatal("invalid decorator"); break; } } else { /* it's a register */ opflags_t rs; uint64_t regset_size = 0; if (value->type >= EXPR_SIMPLE || value->value != 1) { nasm_nonfatal("invalid operand type"); goto fail; } /* * We do not allow any kind of expression, except for * reg+value in which case it is a register set. */ for (i = 1; value[i].type; i++) { if (!value[i].value) continue; switch (value[i].type) { case EXPR_SIMPLE: if (!regset_size) { regset_size = value[i].value + 1; break; } /* fallthrough */ default: nasm_nonfatal("invalid operand type"); goto fail; } } if ((regset_size & (regset_size - 1)) || regset_size >= (UINT64_C(1) << REGSET_BITS)) { nasm_nonfatalf(ERR_PASS2, "invalid register set size"); regset_size = 0; } /* clear overrides, except TO which applies to FPU regs */ if (op->type & ~TO) { /* * we want to produce a warning iff the specified size * is different from the register size */ rs = op->type & SIZE_MASK; } else { rs = 0; } /* * Make sure we're not out of nasm_reg_flags, still * probably this should be fixed when we're defining * the label. * * An easy trigger is * * e equ 0x80000000:0 * pshufw word e-0 * */ if (value->type < EXPR_REG_START || value->type > EXPR_REG_END) { nasm_nonfatal("invalid operand type"); goto fail; } op->type &= TO; op->type |= REGISTER; op->type |= nasm_reg_flags[value->type]; op->type |= (regset_size >> 1) << REGSET_SHIFT; op->decoflags |= brace_flags; op->basereg = value->type; if (rs) { opflags_t opsize = nasm_reg_flags[value->type] & SIZE_MASK; if (!opsize) { op->type |= rs; /* For non-size-specific registers, permit size override */ } else if (opsize != rs) { /*! *!regsize [on] register size specification ignored *! *! warns about a register with implicit size (such as \c{EAX}, which is always 32 bits) *! been given an explicit size specification which is inconsistent with the size *! of the named register, e.g. \c{WORD EAX}. \c{DWORD EAX} or \c{WORD AX} are *! permitted, and do not trigger this warning. Some registers which \e{do not} imply *! a specific size, such as \c{K0}, may need this specification unless the instruction *! itself implies the instruction size: *!- *! \c KMOVW K0,[foo] ; Permitted, KMOVW implies 16 bits *! \c KMOV WORD K0,[foo] ; Permitted, WORD K0 specifies instruction size *! \c KMOV K0,WORD [foo] ; Permitted, WORD [foo] specifies instruction size *! \c KMOV K0,[foo] ; Not permitted, instruction size ambiguous */ nasm_warn(WARN_REGSIZE, "invalid register size specification ignored"); } } } } /* remember the position of operand having broadcasting/ER mode */ if (op->decoflags & (BRDCAST_MASK | ER | SAE)) result->evex_brerop = opnum; } result->operands = opnum; /* set operand count */ /* clear remaining operands */ while (opnum < MAX_OPERANDS) result->oprs[opnum++].type = 0; return result; fail: result->opcode = I_none; return result; } static int end_expression_next(void) { struct tokenval tv; char *p; int i; p = stdscan_get(); i = stdscan(NULL, &tv); stdscan_set(p); return (i == ',' || i == ';' || i == ')' || !i); } static void free_eops(extop *e) { extop *next; while (e) { next = e->next; switch (e->type) { case EOT_EXTOP: free_eops(e->val.subexpr); break; case EOT_DB_STRING_FREE: nasm_free(e->val.string.data); break; default: break; } nasm_free(e); e = next; } } void cleanup_insn(insn * i) { free_eops(i->eops); }