aboutsummaryrefslogtreecommitdiffstats
path: root/security/apparmor/procattr.c
diff options
context:
space:
mode:
authorJohn Johansen <john.johansen@canonical.com>2010-07-29 14:48:01 -0700
committerJames Morris <jmorris@namei.org>2010-08-02 15:35:13 +1000
commite06f75a6a2b43bd3a7a197bd21466f9da130e4af (patch)
treebf5aabceae66c62e317a0403b05ffb320aef54d2 /security/apparmor/procattr.c
parentc75afcd153f6147d3b094f45a1d87e5df7f4f053 (diff)
downloadmrst-s0i3-test-e06f75a6a2b43bd3a7a197bd21466f9da130e4af.tar.gz
mrst-s0i3-test-e06f75a6a2b43bd3a7a197bd21466f9da130e4af.tar.xz
mrst-s0i3-test-e06f75a6a2b43bd3a7a197bd21466f9da130e4af.zip
AppArmor: dfa match engine
A basic dfa matching engine based off the dfa engine in the Dragon Book. It uses simple row comb compression with a check field. This allows AppArmor to do pattern matching in linear time, and also avoids stack issues that an nfa based engine may have. The dfa engine uses a byte based comparison, with all values being valid. Any potential character encoding are handled user side when the dfa tables are created. By convention AppArmor uses \0 to separate two dependent path matches since \0 is not a valid path character (this is done in the link permission check). The dfa tables are generated in user space and are verified at load time to be internally consistent. There are several future improvements planned for the dfa engine: * The dfa engine may be converted to a hybrid nfa-dfa engine, with a fixed size limited stack. This would allow for size time tradeoffs, by inserting limited nfa states to help control state explosion that can occur with dfas. * The dfa engine may pickup the ability to do limited dynamic variable matching, instead of fixing all variables at policy load time. Signed-off-by: John Johansen <john.johansen@canonical.com> Signed-off-by: James Morris <jmorris@namei.org>
Diffstat (limited to 'security/apparmor/procattr.c')
0 files changed, 0 insertions, 0 deletions