1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
// MMC/SD controller for ABC80
// Designed to be compatible with the standard ABC-DOS controllers
//
// Note: in order for this to not require internal tristate buffers in
// the FPGA, the data bus is split, and the "input" bus will be driven
// to all FF when the card is not selected, so all inputs can be ANDed.
//
// The I/O port range is decoded as follows:
//
// A7..A6 - unused
// A5 - SD card (1) / DMA engine (0)
// A4..A0 - register select on CompactFlash card/DMA engine, see
// respective unit
module sdcontroller(
reset_n, // Global reset
clk, // CPU clk (25 MHz)
sd_cs_n, // SD card CS# (CD, DAT3)
sd_di, // SD card DI (MOSI, CMD)
sd_clk, // SD card CLK (SCLK)
sd_do, // SD card SO (MISO, DAT0)
sd_cd_n, // SD socket CD# (Card Detect) switch
sd_we_n, // SD socket WE# (Write Enable) switch
abc_do, // ABC-bus data out (CPU->controller)
abc_di, // ABC-bus data in (controller->CPU)
abc_out_n, // ABC-bus data out select (OUT 0)
abc_cs_n, // ABC-bus Card Select
abc_c1_n, // ABC-bus Command 1 (OUT 2)
abc_c2_n, // ABC-bus Command 2 (OUT 3)
abc_c3_n, // ABC-bus Command 3 (OUT 4)
abc_c4_n, // ABC-bus Command 4 (OUT 5)
abc_inp_n, // ABC-bus data in select (IN 0)
abc_status_n, // ABC-bus status (IN 1)
abc_rst_n, // ABC-bus reset (IN 7)
select, // Selected LED
active, // Active LED
errled // Error LED code
);
input reset_n;
input clk;
output sd_cs_n;
output sd_di;
output sd_clk;
input sd_do;
input sd_cd_n;
input sd_we_n;
input [7:0] abc_do;
output [7:0] abc_di;
input abc_out_n;
input abc_cs_n;
input abc_c1_n;
input abc_c2_n;
input abc_c3_n;
input abc_c4_n;
input abc_inp_n;
input abc_status_n;
input abc_rst_n;
output select;
output active;
output [7:0] errled;
reg [7:0] errled = 8'h00;
// Forward declaration
wire cpu_wait_n; // If we should raise WAIT# to CPU
// Which select code this device uses... select code 36 decimal is used
// for hard disk controllers; this maps this device as HDx:
parameter selectcode = 6'd36;
reg selected;
// ------------------------------------------------------------------------
// Reset and ABC-bus select
// Note: for glitch prevention reasons, treat RST# and C3# as synchronous
// resets only.
// ------------------------------------------------------------------------
reg ireset;
always @(posedge clk)
begin
if ( ~reset_n )
begin
ireset <= 1'b1;
selected <= 1'b0;
end
else // clock
begin
ireset <= 1'b0;
if ( ~abc_rst_n )
begin
ireset <= 1'b1;
selected <= 1'b0;
end
else
begin
if ( selected & ~abc_c3_n )
ireset <= 1'b1;
if ( ~abc_cs_n )
selected <= (abc_do[5:0] == selectcode);
end
end
end
// ------------------------------------------------------------------------
// Controller CPU
// ------------------------------------------------------------------------
wire cpu_m1_n;
wire cpu_iorq_n;
wire cpu_mreq_n;
wire cpu_rd_n;
wire cpu_wr_n;
wire [15:0] cpu_a;
wire [7:0] cpu_di;
wire [7:0] cpu_do;
reg cpu_int_n;
reg cpu_nmi_n;
T80se sd_cpu (
.clk_n ( clk ),
.reset_n ( ~ireset ),
.clken ( cpu_wait_n ),
.wait_n ( 1'b1 ),
.int_n ( cpu_int_n ),
.nmi_n ( cpu_nmi_n ),
.busrq_n ( 1'b1 ),
.m1_n ( cpu_m1_n ),
.mreq_n ( cpu_mreq_n ),
.iorq_n ( cpu_iorq_n ),
.rd_n ( cpu_rd_n ),
.wr_n ( cpu_wr_n ),
.a ( cpu_a ),
.di ( cpu_di ),
.do ( cpu_do )
);
// C1# from the ABC bus generates interrupt; this is used to
// reset the controller state machine to the command state.
always @(posedge clk)
begin
if ( ireset )
cpu_int_n <= 1'b1;
else
if ( selected & ~abc_c1_n )
cpu_int_n <= 1'b0;
else if ( ~cpu_m1_n & ~cpu_iorq_n ) // INTAK
cpu_int_n <= 1'b1;
end // always @ (posedge ireset or posedge clk)
// Generate NMI if we do an I/O operation without A7 set,
// and the card is not present.
always @(posedge clk)
begin
if ( ireset )
cpu_nmi_n <= 1'b1;
else
if ( ~cpu_iorq_n )
cpu_nmi_n <= cpu_a[7] | ~sd_cd_n;
end
// ------------------------------------------------------------------------
// Memory -- second port of RAM used for "DMA" to the main CPU
// We split the memory between ROM and RAM to closer mimic a "real"
// microcontroller-based design here; consider it a prototyping feature.
// RAM is selected by controller CPU A15.
// ------------------------------------------------------------------------
wire [7:0] memrd_rom; // ROM output
wire [7:0] memrd_ram; // RAM output
wire [7:0] memrd; // Read data to controller CPU
reg write_flag; // DMA if we should write data to controller RAM
reg read_flag; // DMA if we just read data from controller RAM
reg [7:0] cpudata_di; // DMA data to controller memory
wire [7:0] cpudata_do; // DMA data from controller memory
reg [10:0] cpudata_addr; // DMA target address
sddrom sddrom (
.clock ( ~clk ),
.address ( cpu_a[9:0] ),
.q ( memrd_rom )
);
sddram sddram (
.clock ( ~clk ),
.address_a ( cpu_a[10:0] ),
.data_a ( cpu_do ),
.wren_a ( ~cpu_mreq_n & ~cpu_wr_n & cpu_a[15] ),
.q_a ( memrd_ram ),
.address_b ( cpudata_addr ),
.data_b ( cpudata_di ),
.wren_b ( write_flag ),
.q_b ( cpudata_do )
);
assign memrd = cpu_a[15] ? memrd_ram : memrd_rom;
// ------------------------------------------------------------------------
// ABC-bus interface (DMA engine)
//
// Control interface addressed on I/O with A5 = 0
// The following ports are decoded:
// OUT 0x00: write main CPU status (returned to main CPU by IN 0)
// OUT 0x01: write aux CPU status (returned to main CPU by IN 1)
// OUT 0x02-0x03: set DMA byte counter, A0 is bit 8 of counter
// OUT 0x04: bits [7:0] of DMA address
// OUT 0x05/0x07: bits [10:8] of DMA address; A1 is direction bit
// (0 = host->controller, 1 = controller->host)
// OUT 0x06: write error LED code (bit 7 = on, 6:0 = 7-seg pattern)
// IN 0x00: D0 = DMA active (transaction in progress)
// D1 = direction bit (see above)
// D2 = card present
// D3 = card write protect
// D4 = set by hard reset, cleared by OUT 0x00
// ------------------------------------------------------------------------
reg [8:0] cpudata_ctr; // Bytes left to DMA
reg cpudata_dir; // 0 = out, 1 = inp
reg [7:0] aux_status; // Auxilliary status
reg [7:0] main_status; // Primary status
wire [7:0] dma_status; // Controller CPU query DMA engine status
wire dma_stat_sel = ~cpu_iorq_n & cpu_m1_n & ~cpu_a[5]; // IN 0x00
wire dma_active = |cpudata_ctr;
reg [7:0] abc_di;
reg hard_reset;
always @(*)
begin
if ( selected & ~abc_inp_n )
if ( dma_active && cpudata_dir == 1 )
abc_di = cpudata_do;
else
abc_di = aux_status;
else if ( selected & ~abc_status_n )
abc_di = main_status;
else
abc_di = 8'hFF;
end // always @ (*)
always @(posedge clk)
begin
if ( ireset )
begin
cpudata_addr <= ~11'b0;
cpudata_ctr <= 9'd0;
cpudata_dir <= 1'b0;
write_flag <= 1'b0;
read_flag <= 1'b0;
main_status <= 8'h00;
aux_status <= 8'h00;
hard_reset <= ~reset_n;
end
else
begin
write_flag <= 1'b0;
read_flag <= 1'b0;
if ( selected & ~abc_out_n )
begin
if ( dma_active & ~cpudata_dir )
begin
cpudata_di <= abc_do;
write_flag <= 1'b1;
end
end // if ( selected & ~abc_out_n )
if ( selected & ~abc_inp_n )
begin
if ( dma_active & cpudata_dir )
begin
// abc_di is generated above
read_flag <= 1'b1;
end
end // if ( selected & ~abc_inp_n )
if ( (write_flag & ~(selected & ~abc_out_n)) |
(read_flag & ~(selected & ~abc_inp_n)) )
begin
// We just completed an OUT or INP cycle
cpudata_addr <= cpudata_addr + 1;
cpudata_ctr <= cpudata_ctr - 1;
// Turn off START COMMAND
main_status[7] <= 0;
// If this was the last byte, turn on busy
if ( cpudata_ctr == 1 )
main_status[0] <= 0;
end
// Set counters or status based on commands from controller CPU
if ( ~cpu_iorq_n & cpu_m1_n & ~cpu_wr_n & ~cpu_a[5] )
begin
casex ( cpu_a[2:0] )
3'b000: // OUT 0x00
begin
main_status <= cpu_do;
hard_reset <= 1'b0;
end
3'b001: // OUT 0x01
aux_status <= cpu_do;
3'b01x: // OUT 0x02-0x03
cpudata_ctr <= { cpu_a[0], cpu_do };
3'b100: // OUT 0x04
cpudata_addr[7:0] <= cpu_do;
3'b1x1: // OUT 0x05 (H2C), 0x07 (C2H)
begin
cpudata_addr[10:8] <= cpu_do[2:0];
cpudata_dir <= cpu_a[1];
end
3'b110:
errled <= cpu_do;
endcase // casex( cpu_a[2:0] )
end
end // else: !if( ireset )
end // always @ (posedge ireset or posedge clk)
// Bit 0: DMA still in progress
// Bit 1: Direction of DMA
// Bit 2: Card Present
// Bit 3: Card Write Protected
// Bit 4: Hard reset
assign dma_status = { 3'b0, hard_reset,
sd_we_n, ~sd_cd_n, cpudata_dir, dma_active };
// ------------------------------------------------------------------------
// SD card interface
//
// This drives the SD card in SPI mode. We support two speeds:
// 12.5 MHz for normal operation, and 25 MHz/64 = 391 kHz for
// initialization.
//
// This is addressed by I/O with A5 = 1, and exports the following I/O
// ports, address bits can be combined:
//
// A0 write - loads the output shift register from the CPU
// A1 write - set speed (D0 = low speed) and CS# (D1, 1 = not selected)
// A2 - clear CRC registers
// A3 - select CRC register input (0 = input, 1 = output)
// A4 - start bus transaction
// On read, A[1:0]:
// 00 - read input latch
// 01 - read CRC7 (in D[7:1], D0 = 1)
// 10 - read CRC16[15:8]
// 11 - read CRC16[7:0]
// ------------------------------------------------------------------------
reg [7:0] sd_shr_out;
reg [7:0] sd_shr_in;
reg [2:0] sd_out_ctr; // Output bit counter
reg sd_active; // Transfer in progress
reg sd_active_neg; // Transfer in progress, first pos clock seen
reg sd_cs_n_reg; // CS# output
reg sd_slow;
reg [5:0] sd_clk_ctr; // Counter for the clock
reg sd_clk_out;
wire sd_clk_pos; // SD clock positive strobe
wire sd_clk_neg; // SD clock negative strobe
reg sd_crcsrc; // CRC generator input
reg sd_crcstb; // Strobe for CRC generator
reg [6:0] sd_crc7; // CRC-7 generator
reg [15:0] sd_crc16; // CRC-16 generator
wire sd_sel = ~cpu_iorq_n & cpu_m1_n & cpu_a[5];
wire sd_cmd = sd_sel & ~sd_active; // CPU command we can act on
reg sd_cmd_ok; // Valid CPU command received
wire sd_start = sd_cmd & cpu_a[4]; // Transaction begin
wire sd_data_out = sd_shr_out[7];
// Output pins - tristate if card not present
assign sd_di = ~sd_cd_n ? sd_data_out : 1'bz;
assign sd_clk = ~sd_cd_n ? sd_clk_out : 1'bz;
assign sd_cs_n = ~sd_cd_n ? sd_cs_n_reg : 1'bz;
// If we try an action while a bus transaction is in progress,
// wait. The register sd_cmd_ok is used to prevent WAIT# from
// being asserted when we already started a transaction on *this*
// I/O operation.
//
// sd_sel: 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0
// sd_active: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
// sd_cmd: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
// sd_cmd_ok: 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
// cpu_wait_n: 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
always @(posedge clk)
if (ireset)
sd_cmd_ok <= 1'b0;
else
sd_cmd_ok <= sd_sel & (~sd_active | sd_cmd_ok);
assign cpu_wait_n = ~(sd_sel & sd_active) | sd_cmd_ok;
// SD clock generator; this counter is used to generate the slow clock.
always @(posedge clk)
if (sd_start)
sd_clk_ctr <= 0;
else
sd_clk_ctr <= sd_clk_ctr+1;
// Generate strobes from the sd_clk_ctr; this is defined to be 1
// in the internal cycle before sd_clk goes positive/negative.
wire ctr_pol = sd_slow ? sd_clk_ctr[5] : sd_clk_ctr[0];
wire ctr_val = ~sd_slow | &sd_clk_ctr[4:0];
assign sd_clk_pos = sd_active & ctr_val & ctr_pol;
assign sd_clk_neg = sd_active_neg & ctr_val & ~ctr_pol;
always @(posedge clk)
if (ireset)
sd_clk_out <= 1'b0;
else
sd_clk_out <= (sd_clk_out | sd_clk_pos) & ~sd_clk_neg;
always @(posedge clk)
if (ireset)
begin
sd_shr_out <= 8'hFF;
sd_cs_n_reg <= 1'b1;
sd_slow <= 1'b1;
sd_active <= 1'b0;
sd_active_neg <= 1'b0;
sd_out_ctr <= 3'h0;
sd_crcstb <= 1'b0;
sd_shr_in <= 8'hxx;
sd_crcsrc <= 1'bx;
end
else
begin
if (sd_clk_pos)
begin
sd_shr_in <= {sd_shr_in[6:0], sd_do};
sd_out_ctr <= sd_out_ctr + 1;
sd_active_neg <= 1'b1;
end
if (sd_clk_neg)
begin
sd_shr_out <= {sd_shr_out[6:0], 1'b1};
sd_active <= |sd_out_ctr;
sd_active_neg <= |sd_out_ctr;
end
sd_crcstb <= sd_clk_pos; // CRCs are computed one cycle after posedge
if (sd_cmd)
begin
if (~cpu_wr_n & cpu_a[0])
sd_shr_out <= cpu_do;
if (~cpu_wr_n & cpu_a[1])
{sd_cs_n_reg, sd_slow} <= cpu_do[1:0];
if (cpu_a[4])
begin
sd_active <= 1'b1;
sd_out_ctr <= 3'h0; // Should be the case already
sd_crcsrc <= cpu_a[3];
end
end // if (sd_cmd)
end
// CRC generators: we have one 7-bit and one 16-bit, shared between
// input and output. The controller CPU has to specify where it wants
// the input from by setting A3 properly when starting a bus
// transaction (A4 = 1).
//
// The CRC generators run one cycle behind the positive sd_clk strobe.
wire sd_crcbit = sd_crcsrc ? sd_data_out : sd_shr_in[0];
wire sd_crc7in = sd_crcbit ^ sd_crc7[6];
always @(posedge clk)
if (sd_cmd & cpu_a[2])
sd_crc7 <= 7'h00;
else if (sd_crcstb)
sd_crc7 <= {sd_crc7[5:3], sd_crc7[2]^sd_crc7in,
sd_crc7[1:0], sd_crc7in};
wire sd_crc16in = sd_crcbit ^ sd_crc16[15];
always @(posedge clk)
if (sd_cmd & cpu_a[2])
sd_crc16 <= 16'h0000;
else if (sd_crcstb)
sd_crc16 <= {sd_crc16[14:12], sd_crc16[11]^sd_crc16in,
sd_crc16[10:5], sd_crc16[4]^sd_crc16in,
sd_crc16[3:0], sd_crc16in};
// Data out to controller CPU
reg [7:0] sd_cpu_rd;
always @(*)
case (cpu_a[1:0])
2'b00:
sd_cpu_rd = sd_shr_in;
2'b01:
sd_cpu_rd = {sd_crc7, 1'b1};
2'b10:
sd_cpu_rd = sd_crc16[15:8];
2'b11:
sd_cpu_rd = sd_crc16[7:0];
endcase // case(cpu_a[1:0])
// ------------------------------------------------------------------------
// Controller CPU data select
// ------------------------------------------------------------------------
assign cpu_di =
{8{cpu_rd_n}} | // Always FF unless we're reading something
(({8{cpu_mreq_n}} | memrd) &
({8{~sd_sel}} | sd_cpu_rd) &
({8{~dma_stat_sel}} | dma_status));
// ------------------------------------------------------------------------
// Output LEDs
// ------------------------------------------------------------------------
parameter active_time = 21; // 2^21 cycles @ 25 MHz ~ 84 ms
reg [active_time:0] active_delay;
assign select = selected; // For external LED, might need hysteresis
always @(posedge clk)
if ( ireset )
active_delay <= ~0;
else if ( sd_active )
active_delay <= 0;
else if ( ~active_delay[active_time] )
active_delay <= active_delay + 1;
assign active = ~active_delay[active_time];
endmodule // cfcontroller
|